From CroCo to MASt3R: A paradigm change in 3D vision?

Jerome Revaud April 2024

NAVER LABS

NAVER LABS Europe

NAVER LABS Europe

Making robots safe, robust and useful in our everyday spaces.

A multidisciplinary approach to AI.

Vision

Perception to help robots understand and interact with the environment.

Action

Enable embodied agents to efficiently execute tasks and to navigate in dynamic environments.

Interaction

Equip robots to interact safely with humans, other robots and systems.

Monocular Depth estimation

Monocular Depth estimation

Large-scale 3D reconstruction

Monocular Depth estimation

Point matching

Large-scale 3D reconstruction

Monocular Depth estimation

Point matching

Large-scale 3D reconstruction

Visual Localization

Monocular Depth estimation

Point matching

Multi-view pose estimation From CroCo to MASt3R - Naver Labs Europe

Large-scale 3D reconstruction

Visual Localization

Monocular Depth estimation

Point matching

Multi-view pose estimation From CroCo to MASt3R - Naver Labs Europe

Large-scale 3D reconstruction

Localization

... and many more: SLAM, calibration,¹MVS, ...

Why seek a unified model?

Why seek a unified model?

- "Foundation models for 3DV"?
 - Weakly-supervised pretext task \rightarrow useful for many downstream tasks
 - Many definitions, no consensus yet
 - Several CVPR workshops on the question

Non-exhaustive listing of relevant works

- "Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations" [CVPR'22]
- "FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-Aligned Scene Flow" [NeurIPS'23]
- "Where are we in the search for an Artificial Visual Cortex for Embodied Intelligence?" [NeurIPS'23] → FM for robotics
- "PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm", [arXiv'23] → mostly semantic tasks
- *"FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects"* [CVPR'24] → for object pose estimation and tracking
- "Scalable Pre-training of Large Autoregressive Image Models" [arXiv'24] → LLM for images
- *"FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding"* [arXiv'24] → DINOv2 with 3DGS
- "Probing the 3D Awareness of Visual Foundation Models" [arXiv'24] → only monocular models, DINOv2 & StableDiffusion work best

Foundation model for 3D vision

- Minimal model capabilities:
 - Ability to establish correspondences between images (matching)
 - Ability to infer 3D geometry
 - from priors & from SfM
 - Ability to infer relative pose (motion)
 - Ability to decompose motion and lighting effects or long-term changes

Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav Arora, Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, Jérôme Revaud

A guessing game: what's masked?

CroCo:

- Self-supervised learning (SSL)
 - Utilizes unlabelled data to learn useful features for downstream tasks
 - Can be used for various computer vision tasks such as object detection, segmentation, and image generation
 - Shows promising results and has been used in state-of-the-art models.
- Masked Modelling as a Key SSL Technique
 - Originally for text (MLM), in BERT, 2018
 - Goal: train a model to predict randomly-masked "parts" in the input
 - CroCo is strongly inspired by Masked Auto-Encoder (MAE) [He et al., CVPR'22]

Reference view From CroCo to MASt3R - Naver Labs Europe

Reference view From CroCo to MASt3R - Naver Labs Europe

Image matching

Relative pose assessment

Reference view From CroCo to MASt3R - Naver Labs Europe

Reference view From CroCo to MASt3R - Naver Labs Europe

Reference view From CroCo to MASt3R - Naver Labs Europe

Reference view

Query view

From CroCo to MASt3R - Naver Labs Europe

Reference view

Reference view From CroCo to MASt3R - Naver Labs Europe More complex cases:

- intricate 3D shape,
- strong baseline,
- specularities,

•

...

- What does it truly learn?
 - many cases can be resolved with good priors
 - To what extent is the reference view helpful?

- Proof of concept:
 - training with synthetic random scenes
 - Test scene never seen before!
- What solving this implies:
 - Match the query and reference images
 - Estimate the relative pose
 - Infer an object-centric 3D reconstruction of the reference scene
 - Align (rotate) the reference scene in 3D
 - Render the reference scene based on imagined

Estimated Image (drag to change point of view)

Masked Image (drag to change point of view)

Mask Ratio

(adjust ratio)

70%

Expected Image (drag to change point of view)

- Proof of concept:
 - training with synthetic random scenes
 - Test scene never seen before!
- What solving this implies:
 - Match the query and reference images
 - Estimate the relative pose
 - Infer an object-centric 3D reconstruction of the reference scene
 - Align (rotate) the reference scene in 3D
 - Render the reference scene based on imagined

- Proof of concept:
 - training with synthetic random scenes
 - Test scene never seen before!
- What solving this implies:
 - Match the query and reference images
 - Estimate the relative pose
 - Infer an object-centric 3D reconstruction of the reference scene
 - Align (rotate) the reference scene in 3D
 - Render the reference scene based on imagined

Estimated Image (drag to change point of view)

Reference Input (drag to change point of view)

Expected Image (drag to change point of view)

Pre-training data

2M image pairs from the Habitat simulator [Savva *et al.*, ICCV'19]

+ 5M training real image pairs ₃₁

CroCo example

Reference input

Masked input

CroCo output

Target image

Monocular downstream tasks

CroCo encoder for monocular tasks

Semantic tasks

- Image classification
- Semantic segmentation

Geometric tasks

- Monocular depth (NYUv2)
- curvature, depth, edges, keypoints2d, keypoints3d, normal, occlusion, reshading

pre-training method (data)	IN1K↑	ADE \uparrow	NYUv2↑	Taskonomy ↓									
	lin.	segm.	depth	curv.	depth	edges	kpts2d	kpts3d	normal	occl.	reshad.	avg.	rank.
DINO 14 (IN1K)	78.2	44.7	66.8	43.04	38.42	3.80	0.16	45.85	65.71	0.57	115.02	39.07	5.00
MAE [38] (IN1K)	75.1	46.1	79.6	41.59	35.83	1.19	0.08	44.18	<u>59.20</u>	0.55	106.08	36.09	2.13
MutliMAE [4] (IN1K)	60.2	46.4	83.0	41.42	35.38	2.17	0.07	44.03	60.35	0.56	105.25	36.17	2.75
MAE (Habitat)	32.5	40.3	79.0	42.06	<u>33.63</u>	1.79	0.08	44.81	59.76	0.56	102.54	35.65	2.88
CroCo (Habitat)	37.0	40.6	85.6	40.91	31.34	<u>1.74</u>	0.08	41.69	54.13	0.55	93.58	33.00	1.25
												34,	

Binocular downstream tasks

CroCo encoder+decoder for stereo and optical flow

L. Mehl, J. Schmalfuss, A. Jahedi, Y. Nalivayko, A. Bruhn - University of Stuttgart

Scene Flow

Download

Stereo

Optical Flow

FAQ

Submit

Not logged in | Login

Please note that methods marked "submitted by spring team" have not been finetuned on Spring.

	Name	1px ▲ total	1px low-detail	1px high-detail	1px matched	1px unmatched	1рх not sky	1px sky	1рх s0-10	1рх s10-40	1рх s40+	Abs
1	<u>CroCo-Stereo</u> code	7.135	6.824	25.893	5.940	30.855	7.371	3.550	2.934	7.757	13.247	0.471
	CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow.	Weinzaepfel et al. IC	CCV 2023.									
2	<u>llnet</u>	10.003	9.630	32.504	8.457	40.707	10.305	5.420	5.865	10.761	15.590	0.761
	Anonymous.											
3	ACVNet	14.772	14.432	35.273	12.600	57.894	11.163	69.621	18.386	11.346	18.145	1.516
	submitted by spring team G. Xu, J. Cheng, P. Guo, and X. Yang. "Attention Concatenation Volume for Accurate and Efficient Stereo Matching." In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.											
4	RAFT-Stereo code	15.273	14.983	32.774	13.394	52.582	9.924	96.571	22.588	10.018	17.086	3.025
	💡 submitted by spring team L. Lipson, Z. Teed, and J. Deng. "RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching." In International Conference on 3D Vision (3DV), 2021.											
5	PWOC-3D [SF] code	18.226	17.831	42.067	16.020	62.014	15.946	52.877	18.279	12.716	34.570	1.343
	R. Saxena, R. Schuster, O. Wasenmuller, and D. Stricker. "PWOC-3D: Deep Occlusion-Aware	End-to-End Scene Fl	ow Estimation." In IE	EE Intelligent Vehicle	s Symposium (IV),	2019.						
6	LEAStereo	19.888	19.547	40.396	17.611	65.086	16.735	67.805	19.076	13.861	39.412	3.884
	💡 submitted by spring team X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drun	mond, and Z. Ge. "H	lierarchical Neural Ar	chitecture Search for	Deep Stereo Match	ing." In NeurIPS, 2020	D.					
7	M-FUSE (F) [SF] code	19.888	19.547	40.396	17.611	65.086	16.735	67.805	19.076	13.861	39.412	3.884
	💡 submitted by spring team L. Mehl, A. Jahedi, J. Schmalfuss, and A. Bruhn. "M-FUSE: Multi	-frame Fusion for Sc	ene Flow Estimation	" In IEEE/CVF Winter	r Conference on Ap	plications of Computer	Vision (WACV), 20	23.				
8	<u>SplatFlow3D (C+T) + LEAStereo (Things); Two-frame [SF]</u> code	19.888	19.547	40.396	17.611	65.086	16.735	67.805	19.076	13.861	39.412	3.884
9	GANet	23.225	22.912	42.064	20.976	67.878	18.418	96.274	24.286	16.427	41.499	4.594
	💡 submitted by spring team F. Zhang, V. Prisacariu, R. Yang, and P. HS Torr. "GA-Net: Guide	d Aggregation Net fo	r End-to-end Stereo	Matching." In IEEE/C	VF Conference on (Computer Vision and F	Pattern Recognition (CVPR), 2019.				
10	RAFT-3D (E) [SF] code	23.225	22.912	42.064	20.976	67.878	18.418	96.274	24.286	16.427	41.499	4.594
	💡 submitted by spring โล้ลกาว. Geed, ลกอ J. Deny ASE3B: Scher Mor แร่เกิดสิญเEMbtio	Embeddings." In IE	EE/CVF Conference	on Computer Vision a	and Pattern Recogn	ition (CVPR), 2021.					37	
11	CamLiFlow (F) [SF] code	23.225	22.912	42.064	20.976	67.878	18.418	96.274	24.286	16.427	41.499	4.594

CroCo: summary

- Self-supervised pretraining
 - Specifically designed for 3D vision, inherently multi-view
 - Arguably and provably learns important "bricks" of 3D vision
 - Generic architecture, easily adaptable for any 3DV downstream task
- CroCo lays the foundation for a unified model
 - But nothing is unified yet (each downstream task is finetuned separately)
 - → still seeking for a unified model ...

• Could "dense 3D reconstruction" be a "super task" for 3DV?

COLMAP's incremental Structure-from-Motion pipeline.

From CroCo to MASt3R - Naver Labs Europe

41 6 8 ECCV/

"Structure-from-Motion Revisited", "Pixelwise View Selection for Unstructured Multi-View Stereo", Schonberger et al., in CVPR'16 & ECCV'16

Sparse model of central Rome using 21K photos produced by COLMAP's SfM pipeline.

Dense models of several landmarks produced by COLMAP's MVS pipeline.

From CroCo to MASt3R - Naver Labs Europe

"Structure-from-Motion Revisited", "Pixelwise View Selection for Unstructured Multi-View Stereo", Schonberger et al., in CVPR'16 & ECCV'16

42

COLMAP's official restrictions

- Capture images with good texture.
 - Avoid texture-less images
- Capture images at similar illumination conditions
 - Avoid high dynamic range scenes
 - Avoid specularities on shiny surfaces using 21K photos produced by COLMAP's SfM pipeline.
- Capture images with high visual overlap.
 - each object in at least 3 images the more the better
- Capture images from different viewpoints.
 - Do not take images from the same location by only rotating the camera, e.g., make a few steps after each shot
 - At the same time, try to have enough images from a relatively similar viewpoint

Dense models of several landmarks produced by COLMAP's MVS pipeline.

From CroCo to MASt3R - Naver Labs Europe

3

"Structure-from-Motion Revisited", "Pixelwise View Selection for Unstructured Multi-View Stereo", Schonberger et al., in CVPR'16 & ECCV'16

- 3D reconstruction is a "super-task" 😳
 - intrinsically connected to all other 3DV tasks
- Current solution is problematic ☺
 - Brittle, requires enough *images* & *overlap* & *textures* & *viewpoints*
 - Heavily handcrafted at all levels
 - An engineering hell!
 - Multiple minimal problems solved sequentially
 - No internal collaboration between them
 - Slow

- Direct RGB-to-3D
 - Monocular depth estimation
 - Quite handcrafted

Metric3D, by Yin et. Al., [ICCV'23]

• End-to-end training of a differentiable version of the SfM pipeline

VGGSfM (Visual Geometry Grounded Deep Structure From Motion), by Wang et. Al., [CVPR'24]

- 2-views SfM as a regression problem?
 - DeMoN [CVPR'17]
 - DeepTAM [IJCV'20]
 - DeepV2D [ICLR'20]

- 2-views SfM as a regression problem?
 - Does not generalize to new camera intrinsics or poses
 - Unstable output space

- 2-views SfM as a regression problem?
 - What's a good parameterization of the output space?
 - → "<u>Pointmap</u>"
 - 1-to-1 mapping between pixels and their corresponding 3D points
 - All geometric 3DV tasks manipulate 2D-3D correspondences somehow!

Note: similar considerations made by UniDepth [CVPR'24] (Depth prediction should be conditioned on intrinsics, output space matters a lot)

• 2-views SfM as a regression problem?

- Roughly invariant to camera parameters
- But over-parameterized (no guarantee to get pinhole-consistent geometry)

Shuzhe Wang Aalto University Vincent Leroy Naverlabs Europe

Yohann Cabon Naverlabs Europe Boris Chidlovskii Naverlabs Europe

Jérome Revaud Naverlabs Europe

- Pointmaps as a proxy output that:
 - capture 3D scene geometry (point-cloud)
 - connect pixels \leftrightarrow 3D points
 - spatially relate 2 viewpoints (relative pose)

55

From CroCo to MASt3R - Naver Labs Europe

- Pointmaps as a proxy output that:
 - capture 3D scene geometry (point-cloud)
 - connect pixels \leftrightarrow 3D points
 - spatially relate 2 viewpoints (relative pose)

Transparent camera

0

src / ffs / Q

IMG_0968.jpg

27

ecent tarred lome esktop ocuments

ownloads

1usic

ictures

ideos rash FS | ocal emmina /ood:src/ffs beegfs/jr/ffs3d beegfs/FFS-3D

Ξ × Properties × Size 1000 × 1334 pixels Type JPEG image File Size 491,2 kB Folder magdalen 3 ISO Camera Date 0 Time ring Show Details Ŧ 0.05

ther Locations

Start from CroCo ...

Start from CroCo and add a 2nd decoder

• Training data

Datasets	Туре	N Pairs
Habitat [103]	Indoor / Synthetic	1000k
CO3Dv2 [93]	Object-centric	941k
ScanNet++ [165]	Indoor / Real	224k
ArkitScenes [25]	Indoor / Real	2040k
Static Thing 3D [68]	Object / Synthetic	337k
MegaDepth [55]	Outdoor / Real	1761k
BlendedMVS [161]	Outdoor / Synthetic	1062k
Waymo [121]	Outdoor / Real	1100k

1. Point Matching

Achieved by mutual nearest neighbor (MNN) search in the 3D pointmap space.

2. Recovering intrinsics

Assuming that the principal point is approximately centered, we can extract the focal lengths from the raw pointmaps.

Despite the lack of any explicit priors, output pointmaps well respect the pinhole camera model!

Method	Habitat	BlendedMVS	CO3D
Monocular	4.13° / 98.3%	3.40° / 99.4%	1.88° / 97.8%
Binocular	2.09° / 95.2%	2.61° / 98.4%	1.62° / 97.7%

Left: Average absolute error of field-of-view (FoV) estimates. Right: Average 2D reprojection accuracy (%) at the threshold of 1% of image diagonal.

3. Visual Localization

Different ways of doing it, the most simple is from 2d correspondences + PnP

Methods				7Sce	nes (Inc	loor) [113]	Cambridge (Outdoor) [48]						
10	letious	Chess	Fire	Heads	Office	Pumpkin	Kitchen	Stairs	S. Facade	O. Hospital	idge (Outdoor) [48] al K. College St.Mary's G. (13/0.22 8/0.25 24/ 12/0.20 7/0.21 11/ 15/0.3 13/0.4 49 18/0.3 9/0.3 28 14/0.24 10/0.34 30/ 14/0.6 39/1.3 16/ 14/0.19 17/0.53 6/		G. Court	
Σ	AS [102]	4/1.96	3/1.53	2/1.45	9/3.61	8/3.10	7/3.37	3 /2.22	4 /0.21	20/0.36	13/0.22	8/0.25	24/ 0.13	
Ц	HLoc [100]	2/0.79	2/0.87	2/0.92	3/0.91	5/1.12	4/1.25	6/ 1.62	4/0.2	15/0.3	12/0.20	7/0.21	11 /0.16	
	DSAC* [11]	2 /1.10	2 /1.24	1 /1.82	3 /1.15	4 /1.34	4/1.68	3 /1.16	5 /0.3	15/0.3	15/0.3	13/0.4	49/0.3	
	HSCNet [54]	2/0.7	2 /0.9	1/0.9	3/0.8	4/1.0	4/ 1.2	3/0.8	6/0.3	19/ 0.3	18/0.3	9/0.3	28/0.2	
۲т`	PixLoc [101]	2 /0/80	2/0.73	1/0.82	3 /0.82	4 /1.21	3/1.20	5/1.30	5/0.23	16/0.32	14/0.24	10/0.34	30/0.14	
E2F	SC-wLS [151]	3/0.76	5/1.09	3/1.92	6/0.86	8/1.27	9/1.43	12/2.80	11/0.7	42/1.7	14/0.6	39/1.3	164/0.9	
	NeuMaps [124]	2 /0.81	3/1.11	2/1.17	3 /0.98	4 /1.11	4/1.33	4/1.12	6/0.25	19/0.36	14/0.19	17/0.53	6/ 0.10	
	DUSt3R 224-NoCroCo	5/1.76	6/2.02	3/1.75	5/1.54	9/2.35	6/1.82	34/7.81	24/1.33	79/1.17	69/1.15	46/1.51	143/1.32	
	DUSt3R 224	3/0.96	3/1.02	1 /1.00	4/1.04	5/1.26	4/1.36	21/4.08	9/0.38	26/0.46	20/0.32	11/0.38	36/0.24	
	DUSt3R 512	3/0.97	3/0.95	2/1.37	3 /1.01	4 /1.14	4/1.34	11/2.84	6/0.26	17/0.33	11/0.20	7/0.24	38/0.16	

From CroCo to MASt3R - Naver Labs Europe

DUSt3R Global alignment

- A fast and simple post-processing optimization for multi-views (takes few seconds).
 - = a well-behaved 3D version of bundle adjustment

$$\chi^* = \underset{\chi, P, \sigma}{\operatorname{arg\,min}} \sum_{e \in \mathcal{E}} \sum_{v \in e} \sum_{i=1}^{HW} C_i^{v, e} \left\| \chi_i^v - \sigma_e P_e X_i^{v, e} \right\|$$

4. Multi-view Pose Estimation

Mathada	N Eromoo	C	Co3Dv2 [93	RealEstate10K [185]			
Methous	IN FIAILIES	RRA@15	RTA@15	mAA(30)	mAA(30)		
COLMAP+SPSG	3	~ 22	~ 14	~ 15	~ 23		
PixSfM	3	$\sim \! 18$	${\sim}8$	$\sim \! 10$	$\sim \! 17$		
Relpose	3	~ 56	-	-	-		
PoseDiffusion	3	~ 75	~ 75	~ 61	- (~77)		
DUSt3R 512	3	95.3	88.3	77.5	69.5		
COLMAP+SPSG	5	~ 21	~ 17	~ 17	~ 34		
PixSfM	5	~ 21	~ 16	$\sim \! 15$	$\sim \! 30$		
Relpose	5	~ 56	-	-	-		
PoseDiffusion	5	~ 77	~ 76	~ 63	- (~78)		
DUSt3R 512	5	95.5	86.7	76.5	67.4		
COLMAP+SPSG	10	31.6	27.3	25.3	45.2		
PixSfM	10	33.7	32.9	30.1	49.4		
Relpose	10	57.1	-	-	-		
PoseDiffusion	10	80.5	79.8	66.5	48.0 (~80)		
DUSt3R 512	10	96.2	86.8	76.7	67.7		

5. Mono Depth Estimation

			Out	door		Indoor							
Methods	Train	DDAD[33]		KITTI [29]		BONN [62]		NYUD-v2 [92]		TUM [94]			
		Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	$\mathrm{Rel}\downarrow$	$\delta_{1.25}\uparrow$		
DPT-BEiT[71]	D	10.70	84.63	9.45	89.27	-	-	5.40	96.54	10.45	89.68		
NeWCRFs[139]	D	9.59	82.92	5.43	91.54	-	-	6.22	95.58	14.63	82.95		
Monodepth2 [31]	SS	23.91	75.22	11.42	86.90	56.49	35.18	16.19	74.50	31.20	47.42		
SC-SfM-Learners [5]	SS	16.92	77.28	11.83	86.61	21.11	71.40	13.79	79.57	22.29	64.30		
SC-DepthV3 [96]	SS	14.20	81.27	11.79	86.39	12.58	88.92	12.34	84.80	16.28	79.67		
MonoViT[145]	SS	-	-	09.92	90.01	-	-	-	-	-			
RobustMIX [72]	Т	-	-	18.25	76.95	-	-	11.77	90.45	15.65	86.59		
SlowTv [93]	Т	12.63	79.34	(6.84)	(56.17)	-	-	11.59	87.23	15.02	80.86		
DUSt3R 224-NoCroCo	Т	19.63	70.03	20.10	71.21	14.44	86.00	14.51	81.06	22.14	66.26		
DUSt3R 224	Т	16.32	77.58	16.97	77.89	11.05	89.95	10.28	88.92	17.61	75.44		
DUSt3R 512	Т	13.88	81.17	10.74	86.60	8.08	93.56	6.50	94.09	14.17	79.89		

6. Multi-view Depth

Mathada	GT	GT	Align	KIT	TI	Scan	Net	ETH	H3D	DT	U	Т&	zΤ	1	Avera	ge
memous	Pose	Range		rel↓	$\tau\uparrow$	$\operatorname{rel} \downarrow$	$\tau\uparrow$	$\text{rel}\downarrow$	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau\uparrow$	time (s),
(a) COLMAP [84, 85]	\checkmark	×	×	12.0	58.2	14.6	34.2	16.4	55.1	0.7	96.5	2.7	95.0	9.3	67.8	$\approx 3min$
(a) COLMAP Dense [84, 85]	\checkmark	×	×	26.9	52.7	38.0	22.5	89.8	23.2	20.8	69.3	25.7	76.4	40.2	48.8	$\approx 3min$
MVSNet [129]	\checkmark	\checkmark	×	22.7	36.1	24.6	20.4	35.4	31.4	(1.8)	(86.0)	8.3	73.0	18.6	49.4	0.07
MVSNet Inv. Depth [129]	\checkmark	\checkmark	×	18.6	30.7	22.7	20.9	21.6	35.6	(1.8)	(86.7)	6.5	74.6	14.2	49.7	0.32
(b) Vis-MVSSNet [141]	\checkmark	\checkmark	×	9.5	55.4	8.9	33.5	10.8	43.3	(1.8)	(87.4)	4.1	87.2	7.0	61.4	0.70
MVS2D ScanNet [128]	\checkmark	\checkmark	×	21.2	8.7	(27.2)	(5.3)	27.4	4.8	17.2	9.8	29.2	4.4	24.4	6.6	0.04
MVS2D DTU [128]	\checkmark	\checkmark	×	226.6	0.7	32.3	11.1	99.0	11.6	(3.6)	(64.2)	25.8	28.0	77.5	23.1	0.05
DeMon [107]	\checkmark	×	×	16.7	13.4	75.0	0.0	19.0	16.2	23.7	11.5	17.6	18.3	30.4	11.9	0.08
DeepV2D KITTI [103]	\checkmark	×	×	(20.4)	(16.3)	25.8	8.1	30.1	9.4	24.6	8.2	38.5	9.6	27.9	10.3	1.43
DeepV2D ScanNet [103]	\checkmark	×	×	61.9	5.2	(3.8)	(60.2)	18.7	28.7	9.2	27.4	33.5	38.0	25.4	31.9	2.15
MVSNet [129]	\checkmark	×	×	14.0	35.8	1568.0	5.7	507.7	8.3	(4429.1)	(0.1)	118.2	50.7	1327.4	20.1	0.15
MVSNet Inv. Depth [129]	\checkmark	×	×	29.6	8.1	65.2	28.5	60.3	5.8	(28.7)	(48.9)	51.4	14.6	47.0	21.2	0.28
Vis-MVSNet [141]	\checkmark	×	×	10.3	54.4	84.9	15.6	51.5	17.4	(374.2)	(1.7)	21.1	65.6	108.4	31.0	0.82
MVS2D ScanNet [128]	\checkmark	×	×	73.4	0.0	(4.5)	(54.1)	30.7	14.4	5.0	57.9	56.4	11.1	34.0	27.5	0.05
MVS2D DTU [128]	\checkmark	×	×	93.3	0.0	51.5	1.6	78.0	0.0	(1.6)	(92.3)	87.5	0.0	62.4	18.8	0.06
Robust MVD Baseline [88]	√	×	×	7.1	41.9	7.4	38.4	9.0	42.6	2.7	82.0	5.0	75.1	6.3	56.0	0.06
DeMoN [107]	×	×	$\ \mathbf{t}\ $	15.5	15.2	12.0	21.0	17.4	15.4	21.8	16.6	13.0	23.2	16.0	18.3	0.08
DeepV2D KITTI [103]	×	×	med	(3.1)	(74.9)	23.7	11.1	27.1	10.1	24.8	8.1	34.1	9.1	22.6	22.7	2.07
DeepV2D ScanNet [103]	×	×	med	10.0	36.2	(4.4)	(54.8)	11.8	29.3	7.7	33.0	8.9	46.4	8.6	39.9	3.57
(d) DUSt3R 224-NoCroCo	×	×	med	15.14	21.16	7.54	40.00	9.51	40.07	3.56	62.83	11.12	37.90	9.37	40.39	0.05
DUSt3R 224	Ň	Ň	med	15.39	26.69	(5.86)	(50.84)	4.71	61.74	2.76	77.32	5.54	56.38	6 85	54 50	0.05
DUSt3R 512	×	×	med	9.11	39.49	(4.93)	(60.20)	2.91	76.91	3.52	69.33	3.17	76.68	4.73	64.52	0.13

7. 3D Reconstruction

From CroCo to MASt3R - Naver Labs Europe

The same model works indoor ...

CALLED AL STOCKER AND

shammers

111

... and outdoor

72

CroGo to MASt3R - Naver Labs Europe

DUSt3R Opposite view matching

DUSt3R "impossible matching"

3D reconstruction without any overlap!

• Failure cases 1/3

• Failure cases 2/3

From CroCo to MASt3R - Naver Labs Europe

• Failure cases 3/3

• Generalization to OOD

DUSt3R: limitations

• Limitations of DUSt3R:

- DUSt3R is extremely robust but lacks accuracy
 - 2 views only
 - intrinsic regression noise

		Methods	GT cams	Acc.↓	Comp.↓	Overall↓
		Camp [11]	✓	0.835	0.554	0.695
	(a)	Furu [32]	\checkmark	0.613	0.941	0.777
	(a)	Tola [100]	\checkmark	0.342	1.190	0.766
		Gipuma [33]	\checkmark	0.283	0.873	0.578
		MVSNet [121]	~	0.396	0.527	0.462
	(b)	CVP-MVSNet [119]	\checkmark	0.296	0.406	0.351
	(0)	UCS-Net [16]	\checkmark	0.338	0.349	0.344
		CER-MVS [55]	\checkmark	0.359	0.305	0.332
)		CIDER [118]	\checkmark	0.417	0.437	0.427
		PatchmatchNet [103]	\checkmark	0.427	0.277	0.352
_		GeoMVSNet [136]	\checkmark	0.331	0.259	0.295
		DUSt3R 512	×	2.677	0.805	1.741

MVS benchmark on DTU

DUSt3R: limitations

• Best results often obtained from pixel correspondences

Methods	GT			7Sce	enes (In	door) [48]				Cambrid	lge (Outdoor	r) [14]	
Methods	Focals	Chess	Fire	Heads	Office	Pumpkin	Kitchen	Stairs	S. Facade	O. Hospital	K. College	St.Mary's	G. Court
DUSt3R 512 from 2D-matching	✓	3/0.97	3/0.95	2/1.37	3 /1.01	4 /1.14	4/1.34	11/2.84	6/0.26	17/0.33	11/0.20	7/0.24	38/0.16
DUSt3R 512 from scaled rel-pose	×	5/1.08	5/1.18	4/1.33	6/1.05	7/1.25	6/1.37	26/3.56	64/0.97	151/0.88	102/0.88	79/1.46	245/1.08

- But not trained explicitly for matching
 - What if we did?

Grounding Image Matching in 3D with MASt3R

Vincent LEROY, Yohann CABON, Jerome REVAUD

Local Features trained with an InfoNCE loss

• Training data:

- 14 datasets (Habitat, ARKitScenes, BlendedMVS, MegaDepth, Static Scenes 3D, ScanNet++, CO3D-v2, Waymo, Map-free, Wild-rgb, Virtual KITTI, Unreal4K, TartanAir, and internal data)
- 50/50 synthetic and real scenes
- 10 datasets have metric GT
- Init from pretrained DUSt3R (same architecture)

Image 1

Image 2

Translation is metric \rightarrow Pixel matching alone does not suffice

Image 2

Almost no overlap \rightarrow Pixel matching alone does not suffice

 R^{12}, T^{12} ?

60° viewpoint change

90° viewpoint change

90° viewpoint change

180° viewpoint change

45° viewpoint change

100° viewpoint change, symmetrical object

Rotation error Translation error

Rotation error Translation error

Rotation error Translation error

Translation error

	AUC (VCRE < - 90px) -	Precision (VCRE < 90px)	Median Reproj. Error (px)	AUC (Err < 25cm, 5°)	Precision (Err < 25cm, 5°)	Median Trans. Error (m)	Median Rot. Error (°)
MASt3R	0.933	79.3%	48.7	0.740	54.7%	0.36	2.2
(CVPR'24) Mickey w/ overlap	0.747	49.2%	129.4	0.325	13.3%	1.65	27.2
(CVPR'24) Mickey	0.740	49.2%	126.9	0.283	12.0%	1.59	25.9
(CVPR'24) DUSt3R	0.697	50.3%	115.8	0.393	21.4%	0.98	7.1
(arXiv'24) FAR (LoFTR)	0.680	44.2%	137.0	0.392	17.7%	1.48	17.2
(CVPR'24) RoMa	0.669	45.6%	128.8	0.407	22.8%	1.23	11.1
(arXiv'24) FAR (SuperGlue)	0.668	44.1%	135.4	0.351	17.1%	1.49	17.2
KBR++ & LoFTR	0.634	34.3%	165.0	0.295	11.0%	2.23	37.8
KBR & LoFTR	0.631	34.0%	167.5	0.277	10.5%	2.32	39.5
(PnP) LoFTR	0.618	33.4%	166.7	0.269	9.8%	2.31	39.4
LoFTR	0.614	34.7%	167.6	0.346	15.4%	1.98	30.5
SuperGlue	0.602	36.1%	160.3	0.346	16.8%	1.88	25.4
(PnP) SuperGlue	0.598	36.0%	156.9	0.252	10.7%	2.10	32.5
SIFT	0.504	25.0%	222.8	0.252	10.3%	2.93	61.4
- (PpD) SIET.	0.468	25.1%	192.0	0.190	7.8%	3.35	63.7

Evaluation Leaderboard

From Cr6COR MASt3R - Naver Labs Europe 25.1%

MASt3R: Relative Camera Pose

	Methods	RRA@15	Co3Dv2 RTA@15	$\frac{\text{RealEstate10K}}{\text{mAA(30)}}$	
10 views	Colmap+SG [20, 73]	36.1	27.3	25.3	45.2
	PixSfM [49]	33.7	32.9	30.1	49.4
	RelPose $[114]$	57.1	-	-	-
	(a) $PosReg [98]$	53.2	49.1	45.0	-
	PoseDiff $[98]$	80.5	79.8	66.5	48.0
	RelPose++ [48]	(85.5)	-	-	-
2 views	RayDiff $[113]$	(93.3)	-	-	-
	DUSt3R-GA [100]	96.2	86.8	76.7	67.7
	(b) DUSt3R [100]	94.3	88.4	77.2	61.2
	(^{b)} MASt3R	94.6	91.9	81.8	76.4

MASt3R: Visual Localization

Methods	InLoc [83]						
Methods	DUC1	DUC2					
SP+SuperGlue [73]	49.0/68.7/80.8	53.4/77.1/82.4					
SP+LightGlue [50]	49.0/68.2/79.3	55.0/74.8/79.4					
LoFTR [81]	47.5/72.2/84.8	54.2/74.8/85.5					
DKM [26]	51.5/75.3/86.9	63.4/82.4/87.8					
DUSt3R top1 $[100]$	36.4/55.1/66.7	27.5/42.7/49.6					
DUSt3R top20 [100]	53.0/74.2/89.9	61.8/77.1/84.0					
MASt3R top1	41.9/64.1/73.2	38.9/55.7/62.6					
MASt3R top20	55.1/77.8/90.4	71.0 /84.7/89.3					
MASt3R top40	56.1 / 79.3 / 90.9	71.0/87.0/91.6					

Using precomputed maps, varying number of retrieved images.

MASt3R: MVS on DTU

MASt3R: MVS on DTU

Architecture and network are not task-specific: we simply triangulate matches in 3D

		Methods	$\mathrm{Acc.}\downarrow$	Comp.↓	Overall↓
		Camp [13]	0.835	0.554	0.695
	(a)	Furu [30]	0.613	0.941	0.777
Handcrafted	(C)	Tola [89]	0.342	1.190	0.766
		Gipuma [31]	0.283	0.873	0.578
		MVSNet [108]	0.396	0.527	0.462
	(4)	CVP-MVSNet [107]	0.296	0.406	0.351
In-domain	(a)	UCS-Net $[17]$	0.338	0.349	0.344
Train on DTU		CER-MVS $[54]$	0.359	0.305	0.332
		CIDER [105]	0.417	0.437	0.427
		PatchmatchNet [97]	0.427	0.277	0.352
		GeoMVSNet $[116]$	0.331	0.259	0.295
OOD	(α)	DUSt3R [100]	2.677	0.805	1.741
Never seen before	(e)	MASt3R	0.403	0.344	0.374
					(in <i>mm</i> !

MASt3R : MVS on DTU

Can someone pls make better MVS than patchmatch, I'm begging you. Otherwise I'm making it this autumn.

10:33 AM · Apr 4, 2024 · 1,134 Views

Torsten Sattler @SattlerTorsten · 7h····Have you tried any of the many learning-based approaches that are around? E.g., things from the leaderboards of Tanks and Temples and ETH3D?...◯ 1tl<</td>♡IIII 329□Johan Edstedt @Parskatt · 7h...Yes, and they seem to generalize very poorly....

It might be a skill issue from my part, perhaps some hidden settings are very important, but they don't work out of the box.

...

1

 $\square 1$

MASt3R: summary

- Advantages over DUSt3R
 - accurate correspondences, even in extreme cases
 - accurate camera poses, possibly metric
 - coarse metric geometry
- Limitations
 - Data-driven → only good on what it knows
 - Not good for long-term changes (e.g. snowy vs. sunny)
 - No semantic (yet)

InstantSplat: Novel View Rendering *from scratch* in seconds

InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds. Zhiwen Fan et. al., [arXiv'24]. https://instantsplat.github.io/

InstantSplat

Global scene optimization via photometric loss and 3DGS

- Novel View Rendering in 40 seconds!! (from scratch, no pose, no intrinsics)
- Concurrent works require 200+ views and hours of optimization

InstantSplat

Result with only 3 input images in 20 seconds from scratch

Conclusion

- Dense 3D reconstruction
 - in a single step
 - without pose nor intrinsics
 - → indeed a paradigm change!
- DUSt3R/MASt3R is a universal model of 3D vision tasks
 - For the 1st time, unifying monocular & binocular depth estimation!
 - The pointmap representation looks obvious retrospectively ③
- Simple, neat and fast!

What's next?

- To-do list:
 - Large-scale
 - Handle lens distortion explicitly
 - Semantic MASt3R
 - Novel View rendering
 - SLAM
 - Dynamic scenes
- We tried, it works:
 - Symmetric decoder (instead of asymmetric right now)
 - DUSt3R with diffusion, but more costly

Thank you!

• Happy to take any question 😳